Geography is changing faster than ever before. Global warming and COVID-19 are pushing change at an unprecedented speed, modifying our environments, markets, and society. This means that we now have a new set of requirements for spatial analysis with the study of Geography and Spatial Data Science becoming much more real time.
As we’ve seen in 2020 change can happen abruptly and we need to be ready. As we start a new year, one of renewed optimism and hope, what are these requirements and what trends should we be focusing on to ensure we can meet the challenges ahead?
This set of new requirements needs new solutions and the ability to perform analysis in a different way. Cloud native spatial data infrastructures will enable us to work much faster and with even more data. Not only will they help us work more efficiently but in a much more fun way since we will not have to worry about ‘the plumbing’.
It is an appropriate moment to move on from the data-dominated GIS era towards a computational geography
Stan Openshaw, Founder Center for Computational Geography
Computational geography is not a new concept (the quote above is from 1994) but only now is it possible thanks to the cloud and more needed than ever. No-code interactive dashboards are enabling data storytelling at a scale never seen before.
Next generation data warehouses, such as BigQuery, Snowflake, Redshift, and Azure Synapse Analytics, provide processing power that can be leverage through SQL or Python notebooks which have three key characteristics that make the game changers from previous generations:
In recent times major next generation data warehouses have added spatial support to their products - think PostGIS but at scale, which is a major step forward for the industry.
At last year’s Spatial Data Science Conference, Dr. Chad W. Jennings, GIS Product Lead at Google Cloud gave more details about the geospatial support within BigQuery.
Data democratization means that everybody has access to data and there are no gatekeepers that create a bottleneck at the gateway to the data. It requires that we accompany the access with an easy way for people to understand the data so that they can use it to expedite decision-making and uncover opportunities for an organization.
Bernard Marr, Author & Strategic Business & Technology Advisor
One of the main problems in data analytics today is the amount of time Data Scientists spend gathering the right data. We frequently hear that 80% of their total analysis time is dedicated to gathering, cleaning and feature preparation, while only the remaining 20% is actually spent on analysis, modeling, and communication of results.
Data marketplaces allow location data democratization. They provide simple access to thousands of public and premium datasets from vetted sources; simplifying the licensing process and giving the end-user standardized methods to access up-to-date and ready to query high-quality location data.
Homogenizing the metadata for datasets offered in such marketplaces allows for a consistent exploration of all available products and ensures simple but precise data enrichment methods.
Data can be accessed from relevant work environments; via Jupyter Notebooks and Python packages, or via drag and drop mapping tools, in order to extract key insights, and create lightweight, intuitive dashboards to share across organizations.
These Spatial Data Science trends can play a key role in the recovery of many industries suffering from the events of 2020. This year we predict an increasing adoption of such technologies across all industries, in particular in CPG & Retail, Financial Services, and Logistics. Keep your eyes on the blog and our social accounts for an event announcement relating to these industries very soon!
Want to get started?
Sign up for a free accountOver the past year consumer behavior has changed significantly and many believe permanently. Last year U.S. CPG sales rose by 10.3% to $933 billion as consumers stocked up ...
Spatial DataAs we enter into the second year of a COVID-19 era, consumers are continuing to shift how they move through the physical world with the physical location of businesses and ...
Spatial DataDue to the current level of uncertainty surrounding the Covid-19 pandemic, the effects of the upcoming economic recession are nearly impossible to predict; however, history...
Spatial DataPlease fill out the below form and we'll be in touch real soon.